English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 49378/84106 (59%)
造访人次 : 7365846      在线人数 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111823

    题名: Snapback repellers and homoclinic orbits for multi-dimensional maps
    作者: Kang-Ling Liao;Chih-Wen Shih
    关键词: Snapback repeller;Homoclinic orbit;Chaos
    日期: 2016/06/01
    上传时间: 2017-10-25 02:10:49 (UTC+8)
    摘要: Marotto extended Li–Yorkeʼs theorem on chaos from one-dimension to multi-dimension through introducing the notion of snapback repeller in 1978. Due to a technical flaw, he redefined snapback repeller in 2005 to validate this theorem. This presentation provides two methodologies to facilitate the application of Marottoʼs theorem. The first one is to estimate the radius of repelling neighborhood for a repelling fixed point. This estimation is of essential and practical significance as combined with numerical computations of snapback points. Secondly, we propose a sequential graphic-iteration scheme to construct homoclinic orbit for a repeller. This construction allows us to track the homoclinic orbit. Applications of the present methodologies with numerical computation to a chaotic neural network and a predator–prey model are demonstrated.
    關聯: Journal of Mathematical Analysis and Applications, No. 386, 387-400.
    显示于类别:[數學學系暨研究所] 期刊論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈