English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91867 (63%)
造訪人次 : 14041706      線上人數 : 109
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111812

    題名: Low-complexity range tree for video synopsis system
    作者: Chih-Hsien Hsia;Jen-Shiun Chiang;Chi-Fang Hsieh
    關鍵詞: Object detection;Video retrieval system;Gaussian mixture model;Low-complexity range tree;Video synopsis system
    日期: 2016-08
    上傳時間: 2017-10-25 02:10:25 (UTC+8)
    出版者: Springer US
    摘要: This work proposes an efficient video retrieval technique for video synopsis. In a video system, the Region of Interest (ROI) should be extracted in a long video effectively such that users can browse it quickly and easily. Focusing on the characteristics of objects in the foreground of real-world video sequences, this work employs the Gaussian Mixture Model (GMM) and color-histograms for object detection. In order to reduce the search time, a new video synopsis search approach, a low-complexity range tree algorithm, is proposed to improve the effectiveness of searches for objects of interest matching pre-set conditions. With the time and space redundancy-reducing techniques of video synopsis, the objects of interest can be displayed within a short time. Objects and events can be found and displayed quickly without allocating time to watching non-ROIs. For the test video sequences, the results show an accuracy rate of 97 % and a processing speed of 32 FPS (frames per second) in the online phase, and the time complexity of object searching is reduced from O(N) to O(logD-1N).
    關聯: Multimedia Tools & Applications 75(16), p.9885-9902
    DOI: 10.1007/s11042-015-2714-2
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Low-complexity range tree for video synopsis system.pdf1538KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋