English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52052/87180 (60%)
造訪人次 : 8894278      線上人數 : 55
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111768

    題名: Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study
    作者: Ching-Huang Lai;Han-Bin Huang;Yue-Cune Chang;Ting-Yao Su;Chin-Sheng Tang;Trong-Neng Wu;Saou-Hsing Liou
    關鍵詞: Fine particulate matter;PM2.5;1-Hydroxypyrene;N7-methylguanine (N7-MeG);8-Oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG);Longitudinal study
    日期: 2017-11-15
    上傳時間: 2017-10-03 02:10:33 (UTC+8)
    摘要: An increased understanding is needed of the physiological effects and plausible biological mechanisms that link PM2.5 (particulate matter with an aerodynamic diameter below 2.5 μm) exposure to mortality and morbidities such as atherosclerosis and respiratory disease. PM2.5 causes carcinogenic health effects. Biomonitoring in humans has suggested that 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxodG) and N7-methylguanine (N7-MeG) are correlated with oxidative and methylated DNA damage. Thus, it is meaningful to explore the mechanisms of mutagenesis and carcinogenesis associated with oxidative and methylated DNA damage by simultaneously measuring these two markers. We recruited 72 participants from 2 areas (residential and commercial as well as residential and industrial) in the greater Taipei metropolitan area at baseline. Personal samplers were used to collect 24-hour PM2.5-integrated samples. All participants completed an interview, and blood and urine samples were collected the next morning. All collection procedures were repeated twice after a two-month follow-up period. Urinary 8-oxodG and N7-MeG were assayed as biomarkers of oxidative and methylated DNA damage, respectively. Plasma superoxide dismutase (SOD) and glutathione peroxidase-1 (GPX-1) were measured as biomarkers of antioxidants. Urinary 1-hydroxypyrene (1-OHP) was used as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs).
    The mean PM2.5 level was 37.3 μg/m3 at baseline. PM2.5 concentrations were higher during winter than during spring and summer. After adjusting for confounds through a generalized estimating equation (GEE) analysis, N7-MeG was significantly increased by 8.1% (β = 0.034, 95% CIs = 0.001–0.068) per 10 μg/m3 increment in PM2.5. 8-oxodG levels were positively correlated with N7-MeG according to both cross-sectional and longitudinal analyses, and 1-OHP was significantly associated with increasing 8-oxodG and N7-MeG concentrations.
    Exposure to PM2.5 increases methylated DNA damage. The mean level of urinary N7-MeG was 1000-fold higher than that of 8-oxodG.
    關聯: Science of the Total Environment 598, p.289–296
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults A longitudinal study.pdf556KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋