English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3870965      Online Users : 316
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111493

    Title: 基於複合式電力系統之遠程風速儀
    Other Titles: A remote anemometer based on hybrid power systems
    Authors: 謝易霖;Hsieh, Yi-Lin
    Contributors: 淡江大學電機工程學系碩士班
    楊淳良;Yang, Chun-Liang
    Keywords: 風速儀;複合式電力系統;半導體雷射;綠源;微型風力發電機;Anemometer;hybrid power system;laser diode;Green energy;wind turbine
    Date: 2016
    Issue Date: 2017-08-24 23:54:09 (UTC+8)
    Abstract: 在高海拔地區,許多氣象監測站設置,但是它們仍須倚靠外部供電,這導致監測站建置受限。為了克服供電以及長距離回傳訊問題,我們採用光纖,由於它的電磁免疫力及傳輸損失比銅線要好得多。此外,它的生產原料是矽,蘊藏量極大,容易開採,所以價格很便宜。
    At high altitude, many meteorological stations have set, but they still rely on the external electrical power supply, which causes them a construction limitation. To overcome the problem of the power supply and long-range communication, we employ the optical fiber due to its electromagnetic immunity and transmission loss much better than copper wire. Additionally, its raw material is silicon, a significant amount, easily mined, so the price is very low.
    The design goal is to achieve remote environmental monitoring and green energy supply at a meteorological station. Even though the green energy supply is insufficient to support communication, the proposed scheme based on hybrid power systems will still communicate the monitored information back to central control office. Thus we discuss the remote anemometer based on hybrid power systems, including the wind power and optical power pumping systems. A miniature horizontal axis wind turbine, whose output electrical signal can directly drive the laser diode, generates the wind power and wind speed information. The output light of the laser diode via the optical fiber propagates back to the post-processing unit of central control office so as to measure the monitored wind speed. If the wind power is too low to enable the valid information back, the optical power pumping system at central control office can alternatively activate and bias the laser diode.
    Therefore, this paper has demonstrated the remote anemometer based on hybrid power systems, whose optical power pumping system can successfully act as an auxiliary power.
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Thesis

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback