淡江大學機構典藏:Item 987654321/111482
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8293018      在线人数 : 6918
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111482


    题名: 正值系統之 H-infinity 控制器設計
    其它题名: H-infinity controller synthesis for positive systems
    作者: 潘咨融;Pan, Tzu-Jung
    贡献者: 淡江大學電機工程學系碩士班
    周永山
    关键词: 正值系統;輸出回授;降階;結構化控制器;線性矩陣不等式;positive systems;output-feedback;Reduced-Order;Structured Controller;linear matrix inequality
    日期: 2016
    上传时间: 2017-08-24 23:53:55 (UTC+8)
    摘要: 本文研究離散時間、線性、非時變正值系統之動態輸出回授H∞控制器設計問題。首先針對輸出矩陣具有特定形式之正值系統,本文推導出以線性矩陣不等式(linear matrix inequality, LMI)與線性不等式組成之充要條件,其甚至適用於控制器為降階與具結構限制的情形。針對更具一般性之正值系統,本文提出相似的充分條件以及兩階段式之設計演算法。另外,更進一步地以類似論點延伸至另一種狀態空間之控制器合成問題。最後,模擬結果證實了本文所提方法是有效的。
    This paper is concerned with the H-infinity dynamic output-feedback stabilization of discrete-time positive linear time-invariant systems. It is first shown that for a class of positive systems whose output matrix has a particular form, necessary and sufficient condition is derived in terms of a set of linear matrix inequality (LMI) and linear inequalities, even if the output feedback controllers are of reduced-order and/or have structural constraints. Analogously, for the more general case, sufficient conditions of similar form are also derived and a two-stage algorithm is developed. Further extension to the synthesis problem in a different state space is also made by similar arguments. Finally, simulation is conducted that establishes the effectiveness of the proposed methods.
    显示于类别:[電機工程學系暨研究所] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML155检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈