English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8676872      Online Users : 91
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111454

    Title: 應用於局部放電檢測的超高頻帶之超寬頻天線設計
    Other Titles: UWB antenna design for UHF band to be applied for partial discharge detection
    Authors: 吳彥廷;Wu, Yan-Ting
    Contributors: 淡江大學電機工程學系碩士班
    李慶烈;Li, Ching-Lieh
    Keywords: 田口最佳化法;直交表;UWB;UHF;響應表;planar antenna;Ultra-Wideband;UHF antenna;UWBantenna;Response Table;Taguchi method
    Date: 2016
    Issue Date: 2017-08-24 23:53:15 (UTC+8)
    Abstract: 本論文研究一個長方形柱體狀的超高頻(UHF)天線之優化設計,超高頻天線在此的功用為一個局部放電檢測系統的關鍵檢測元件,此元件以0.8mm厚的FR4基板(相對介電係數為4.4)來進行分析模擬、設計與實驗驗證。
    本論文的另一目的在測試不同優化過程(基於等差田口優化法)的設計效果,包括只使用響應表的結果來進行優化,或是比較響應表的結果與直交表實驗的結果,擇優來進行優化。經過測試的經驗顯示,後者比前者可以在較少的迭代次數找到最佳的數值結果,且其獲致的|S11|max 數值也都低於期望的-10dB以下,而尺寸也會比前者方法找到的來得更小。
    This thesis investigates the optimization design of ultra high frequency (UHF) sensing antennas of rectangular cylinder shape. The UHF antenna functioning as a sensor is a key element of a partial discharge detection system. The element is assumed to reside on an FR4 substrate (relative permittivity power factor of 4.4) of thickness 0.8mm, while its simulation, design and experimental verification are carried out.

    Optimal Design of the proposed UHF antenna start with a structure of rectangular monopole, which is subdivided into a plurality of (e.g., 10) rectangular thin metal strip, and the lengths of the strips serve as variables to be determined; In additions, the ground plane of the antenna is extended and bent to form an S-shape antenna structure for the purpose of downsizing.

    Another objective of the thesis is to test the design outcomes of different optimization procedures (based on arithmetic Taguchi’s optimization method), which includes the use of the results from response table only for optimization, or through the comparison of the above results mentioned with those results of the orthogonal table; for the latter, the better one is chosen for optimization. Empirical tests show that the latter procedure can yield better numerical results with fewer iterations than the former did; and the attainable values of S11 are lower than -10dB expected, and the antenna size is smaller, too.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback