English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49433/84388 (59%)
Visitors : 7447045      Online Users : 68
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111428

    Title: The effect of the hypersonic bodies with aerospikes on drag reduction
    Other Titles: 伴隨氣尖裝置之極音速物體的減阻效應
    Authors: 劉晉銘;Liu, Chin-Min
    Contributors: 淡江大學航空太空工程學系碩士班
    宛同;Wan, Tung
    Keywords: 極音速;鈍體;氣尖;氣盤;減阻;k-ω紊流模組;克利金法;Hypersonic;Blunt body;Aerospike;Aerodisk;Drag reduction;k-ω Turbulence Model;Kriging Method
    Date: 2016
    Issue Date: 2017-08-24 23:52:35 (UTC+8)
    Abstract: Orion是當今最先進的太空船之一,其將會在近期執行深度太空任務,例如火星任務及小行星登陸。此外,Orion太空船是鈍體的一種,因此,高度的壓力阻力及空氣動力加溫現象會在重返大氣層時體驗到。
    在此份論文中,我們將研究伴隨不一樣間隙寬度的氣盤之氣尖裝置在減阻上的效應。因此,我們透過ANSYS Fluent來執行一連串的計算流體力學(CFD)數值模擬工作以研究及解釋極音速流體流經鈍體的相關行為現象。此外,氣尖鈍體的阻力係數及其相關減阻效率將可以透過克里金法的最佳化演算法來得到。
    Orion MPCV (Multi-Purpose Crew Vehicle) is one of the state-of-the-art manned space vehicles nowadays which will engage in the deep space missions in the near future such as the journey to Mars and the asteroid landing. Besides, Orion spacecraft is a kind of blunt body, thus the phenomena concerning the high levels of pressure drag and aerodynamic heating are experienced during the atmospheric re-entry process.
    Pressure drag and aeroheating stirred by the shock wave is the main challenge of hypersonic flight, and the blunt body is always the principle configuration at hypersonic flow regime for heat distribution, but it would induce tremendous drag to the body. Therefore, both aerospikes and aerodisks can be efficiently utilised as the approach for drag reduction purpose. Furthermore, the implication of drag and heat transfer reduction for the hypersonic bodies plays a crucial part in the future development of space science and technology.
    In this thesis, we would research the effect of different geometric shapes of aerospikes with different disk gap widths on drag reduction. Accordingly, we implemented a series of Computational Fluid Dynamics (CFD) numerical simulation work via ANSYS Fluent CFD code to investigate and interpret the behaviour in relation to hypersonic flow over aerospiked blunt bodies. Moreover, the drag coefficient and the drag reduction efficiency of spiked blunt bodies would be worked on and acquired via Kriging-based optimisation method.
    For the models we studied, we found that the drag on the spiked blunt bodies is much lower than the spike off one. The drag reduction efficiency especially would be predominated by the scale of recirculation zone, which increases as both the spike length and the gap size of aerodisk increase. Hence, the performance of drag diminution will depend on the design parameters of bodies such as main body configurations, aerospike length, tip geometric shapes and drag reduction schemes. The results from this research could be the cornerstone for the design of future hypersonic blunt bodies and space exploration vehicles.
    Appears in Collections:[航空太空工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback