English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49647/84944 (58%)
Visitors : 7711545      Online Users : 34
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111418


    Title: 應用希爾伯特-黃轉換分析腦波
    Other Titles: EEG signal analysis using the Hilbert-Huang Transform
    Authors: 王耀陞;Wang, Yao-Sheng
    Contributors: 淡江大學航空太空工程學系碩士班
    蕭富元;Hsiao, Fu-Yuen
    Keywords: 腦波訊號;腦波分析;希爾伯特-黃轉換;假設測試;EEG;Analysis of brain wave;Hilbert-Huang Transformation;Hypothesis test
    Date: 2016
    Issue Date: 2017-08-24 23:52:22 (UTC+8)
    Abstract: 本論文主要探討如何理解腦波資訊,尤其是對左右方向的分辨,由於腦波是非常微弱的訊號,因此機器所接收到的腦波訊號,很容易混近許多雜訊。本研究採用簡易式腦波儀,並搭配希爾伯特-黃轉換,將雜訊濾除,取出有用的腦波訊息,再透過統計的方法,試圖找出腦部在思考左右兩個方向的特徵,本研究將來可應用於利用腦波來控制無人飛行器。
    This thesis investigates the interpretation of information from brain wave, especially the way to distinguish the directions. Brain wave is so weak that many noises will be included in the received signal by an Electroencephalogram (EEG). In this research a simple EEG is used, and the Hilbert-Huang Transformation (HHT) is employed to perform empirical mode decomposition (EMD). Once the signal is decomposed, brain wave signal can be identified. Hypothesis testing in statistics is also introduced to characterize the signal. The results of this thesis is potentially applicable to the control of UAVs using EEG in the future.
    Appears in Collections:[航空太空工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML14View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback