English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8313263      Online Users : 7193
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111410


    Title: 視覺感測與慣性量測融合於同時定位與建圖
    Other Titles: Fusion of inertial measurement and visual sensor for simultaneous localization and mapping
    Authors: 吳皇毅;Wu, Huang-Yi
    Contributors: 淡江大學機械與機電工程學系碩士班
    孫崇訓;Sun, Chung-Hsun
    Keywords: 單眼攝影機;慣性量測元件;視覺式同時定位與建圖;單眼視覺估測初始化;Monocular vision;Inertial measurement unit;Simultaneous Localization and mapping(SLAM);Monocular SLAM initialization.
    Date: 2016
    Issue Date: 2017-08-24 23:52:04 (UTC+8)
    Abstract: 本論文探討慣性量測元件輔助單眼視覺同時定位與建圖的議題。本論文使用加速強健特徵(Speed-Up Robust Feature, SURF)演算法偵測並描述特徵點,再以反深度參數化方法描述地標點位置,並利用擴張型卡爾曼濾波器(extended Kalman filter, EKF)估測攝影機及地標點狀態。使用慣性量測元件的位移可以推測出尺度基準,並能以此初始化單眼視覺估測,並透過實驗證實慣性量測元件能使單眼視覺同時定位與建圖成功初始化。
    This study investigates the issues of inertial measurement unit (IMU) assisted monocular simultaneous localization and mapping (SLAM). The speeded-up robust features (SURF) algorithm is used for interest point detection and description. The positions of environment landmarks are represented by inverse depth parameterization method. The positions of camera and landmarks can be estimated by using the extended Kalman filter (EKF). The map scale for monocular SLAM initialization can be estimated by the displacement of IMU. The experiment results demonstrate that the IMU successfully initialize monocular SLAM.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML154View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback