English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8313250      Online Users : 7180
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111402


    Title: 視覺慣性里程計之一致性分析
    Other Titles: Consensus analysis for visual-inertial odometry
    Authors: 陳萱;Chen, Hsuan
    Contributors: 淡江大學機械與機電工程學系碩士班
    孫崇訓;Sun, Chung-Hsun
    Keywords: 視覺慣性里程計;群聚分析;菁英制;visual-inertial odometry;Clustering Analysis;elitist strategy
    Date: 2016
    Issue Date: 2017-08-24 23:51:53 (UTC+8)
    Abstract: 本論文探討的主要重點為整合視覺感測元件與慣性量測元件(Inertial Measurement Unit)之里程計(Visual-Inertial Odometry, VIO)及其一致性分析。以SURF(Speeded-Up Robust Feature)搜尋雙眼影像上之特徵點,將較為強健的特徵設為地標點,並利用立體幾何關係給定三維座標位置。透過移動前後地標點的位置,經由三點透視問題(perspective-3-point, P3P)及隨機取樣一致(random sample consensus, RANSAC)演算法求算出攝影機位置。搭配慣性量測元件(IMU)推算出旋轉角度,達成視覺慣性里程計的目的。此外,加入群聚分析剔除地標點位置的雜訊,並利用菁英制選取地標點,減少P3P運算時間。而後疊代修正攝影機與地標點位置完成一致性的分析。最後以實驗結果驗證所提出的視覺慣性里程計之一致性分析的定位準確性與即時性。
    This thesis focuses on integrating a vision system and an inertial measurement unit (IMU) into a visual-inertial odometry (VIO). Also, the consensus analysis is discussed in this thesis. First, the visual features in binocular images are detected by the speeded-up robust feature (SURF) algorithm. And, the robust features are defined as the landmarks and be located by the stereo geometry method. The camera can be located by the perspective-3-point (P3P) and random sample consensus (RANSAC) algorithms with the located landmarks. The IMU is used to measure the rotation of the camera. Then, the visual-inertial odometry is implemented. Besides, the clustering analysis for the position of landmarks removes the outliers. And, elitist strategy effectively reduces the computing demand for the P3P. The positions of the camera and landmarks are iteratively corrected to complete the consensus analysis. Finally, the experimental results demonstrate the accuracy and instantaneity of the proposed consensus analysis for the visual-inertial odometry.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML162View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback