淡江大學機構典藏:Item 987654321/111380
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9305130      Online Users : 230
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111380


    Title: 卷積類神經演算法於影像風格轉換之研究
    Other Titles: A study on the convolutional neural algorithm of image style transfer
    Authors: 鮑奕諠;Pao, Yi-Hsuan
    Contributors: 淡江大學資訊工程學系資訊網路與多媒體碩士班
    林慧珍;Lin, Hwei-Jen
    Keywords: 最大池化;倒傳遞;風格轉換;過度擬合;深度卷積類神經網路;全卷積網路;感知域;卷積核;合併卷積核;max-pooling;back-propagation;style transfer;over-fitting;deep convolutional neural networks (DCNN);fully convolutional networks;receptive field;kernel;merge kernel
    Date: 2016
    Issue Date: 2017-08-24 23:51:21 (UTC+8)
    Abstract: 近年來深度類神經網路學習在各領域的發展都有很好的成效,在影像分類上已有顯著的進步,應用在影像的藝術風格轉換,也有很好的成果。L. A. Gatys et al. [6]所提出的利用學習好的CNN (Convolutional Neural Network)架構 VGG [13]來做影像風格轉換,也有令人為之驚豔的結果。本研究將針對L. A. Gatys et al. 所提出的影像風格轉換法,其中遇到的問題,做探討並提出可能的改進或解決方法。在作影像的藝術風格轉換訓練階段,隨著網路層數的增加,其運算時間也急速膨脹,尤其在倒傳遞修正過程中,勢必會遇到許多不同的問題(風格影像和內容影像比例參數調整、修正量調整,加速運算,⋯)。本研究主要探討這些問題的解決方法,包含如何有效地選擇能量函數權重值、如何化簡偏微分乘積鏈、如何加速修正量的計算,經實驗證明運算時間有明顯的改善,我們所提出正規化權重調整的方法,也顯現令人滿意的效果。
    Recently, deep convolutional neural networks have resulted in noticeable improvements in image classification and are used to transfer artistic style of images. L. A. Gatys et al. [6] proposed the use of a learned CNN (Convolutional Neural Network) architecture VGG [16] to transfer image style, but problems occur during the back propagation process because there is a heavy computational load. This paper solves these problems, including the simplification of the computation of chains of derivatives, accelerating the computation of adjustments, and efficiently choosing weights for different energy functions. The experimental results show that the proposed solutions improve the computational efficiency and render the adjustment of weights for energy functions easier.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML147View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback