English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8006903      Online Users : 60
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111340


    Title: Incrementally mining usage correlations among appliances in smart homes
    Other Titles: 漸增式探勘智慧家庭中電器使用的關聯性
    Authors: 廖偉勳;Liao, Wei-Hsun
    Contributors: 淡江大學資訊工程學系碩士在職專班
    陳以錚;Chen, Yi-Cheng
    Keywords: 特徵相關性;智慧家庭;特徵序列;增量探勘;使用者表示法;correlation pattern;Smart home;sequential pattern;Incremental Mining;usage representation
    Date: 2016
    Issue Date: 2017-08-24 23:50:24 (UTC+8)
    Abstract: 近年來,由於傳感器技術的進步,使用者可以很容易地收集家電的使用數據。然而,在產生巨量資料的情況下,如何從大數據探勘家電的使用行為徵是具有挑戰性的。現今探勘使擁著行為模式的研究主要集中在靜態探勘,忽略了挖掘結果的動態維護。在本文中,我們提出了一個漸增式探勘演算法:DCMiner,在智慧家居環境中有效率地探勘和維護電器間的使用關係特徵樣式。此外,一些最佳化的方法,能提出有效地減少搜索空間。實驗結果顯示出,DCMiner不僅能有效率,具有極大的可擴展性。我們並且使用了的一個真實的測資來驗證漸增式探勘電器中使用關聯性的實用性。
    Abstract: Recently, due to the great advent of sensor technology, residents can collect household appliance usage data easily. However, in general, usage data are generated progressively; visualizing how appliances are used from huge amount of data is challenging. Thus, an algorithm is needed to incrementally discover appliance usage patterns. Prior studies on usage pattern discovery are mainly focused on mining patterns while ignoring the incremental maintenance of mined results. In this paper, a novel method, Dynamic Correlation Miner (DCMiner), is developed to incrementally capture and maintain the usage correlations among appliances in a smart home environment. Furthermore, several optimization techniques are proposed to effectively reduce the search space. Experimental results indicate that the proposed method is efficient in execution time and possesses great scalability. Subsequent application of DCMiner on a real dataset also demonstrates its practicability.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML33View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback