English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8025459      Online Users : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111154


    Title: 垃圾郵件分類及特徵選擇組合之分析研究
    Other Titles: Analysis of combinations of the spam classification and feature selection
    Authors: 鄭奕騰;Cheng, Yi-Teng
    Contributors: 淡江大學資訊管理學系碩士班
    周清江;Jou, Chichang
    Keywords: 郵件分類;概念漂移;特徵選擇;組合分析;e-mail categorization;concept drift;Feature Selection;combination analysis
    Date: 2016
    Issue Date: 2017-08-24 23:45:20 (UTC+8)
    Abstract: 垃圾郵件氾濫的問題主要是透過垃圾郵件分類過濾垃圾郵件,先依照相關指標選定特徵字集,再依照某個分類演算法進行分類。然而此問題一直沒有獲得徹底解決,需要進一步分析垃圾郵件分類相關特徵字選取指標及分類演算法之特性,以求更佳分類效果。本研究採用TFIDF和IG這兩種特徵字選取指標,並採用權重貝氏和支持向量機這兩種分類演算法,對這些特徵選取指標和分類演算法以各自獨立、交集和聯集的方式,進行組合分析,本研究將透過實驗來比較分析這16種組合在概念漂移情況下之分類效能,並就各組實驗之最佳分類組合,分析在不同時間點之效能及整體穩定度。
    The spam-email overflow problems are mainly solved by filtering spam-emails through spam email classifications. They first select a set of feature words according to their indicative figures, and then apply a classification algorithm to decide whether an incoming email is a spam. However, the problem has not been solved completely. There is a need to further analyze related characteristics of the feature words selection indicatives and classification algorithms to achieve better classification effectiveness. We use two feature words selection indicatives: TFIDF (Term Frequency–Inverse Document Frequency) and IG (Information Gain) and two classification algorithms: Weighted Naive Bayesian and SVM (Support Vector Machine) as representatives in the analysis. By using them independently, under the intersection operator, or under the union operator, through experiments in the context of concept drift, we compare the classification effectiveness of these 16 combinations of feature selection indicatives and classification algorithms. Additionally, for each experiment we analyse the classification effectiveness of the best combination different accumulated number of e-mails. Stability of the combination is also discussed.
    Appears in Collections:[資訊管理學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback