English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7382353      線上人數 : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111148


    題名: 以分群為基礎之線上拍賣詐騙偵測方法
    其他題名: An effective fraud detection method based on clustering
    作者: 詹凱薰;Chung, Kai-Hsun
    貢獻者: 淡江大學資訊管理學系碩士班
    張昭憲;Chang, Jou-Shien
    關鍵詞: 詐騙偵測;分類樹;分群;電子商務;Fraud Detection;Binary Trees;Cluster;e-commerce
    日期: 2016
    上傳時間: 2017-08-24 23:45:12 (UTC+8)
    摘要: 網路拍賣龐大商機吸引不少投機份子加入,運用詐術獲取不法收益,造成消費者大量時間與金錢損失,嚴重影響電子商務未來發展。面對此問題,學者紛紛提出許多詐騙偵測方法,期能降低消費者損失。然而,面對日新月異的詐騙技巧,這些方法並無法獲得令人滿意的準確率。有鑑於此,本研究發展一套新的動態塑模詐騙偵測方法,期能根據待測帳號的特性,動態建立有效的偵測模型。為此,首先我們將蒐集而得之資料進行篩選過濾,移除具有不合理偏差值之記錄。其後,將訓練資料中詐騙者與正常者進行群聚分析。最後,根據待測帳號與這些群聚的匹配程度,找出最適合之正常者與詐騙者群聚來塑模。為驗證提出方法之有效性,本研究蒐集Yahoo!Taiwan實際交易資料進行實驗。實驗結果顯示,與傳統單一分類樹方法比較,動態塑模確實有助於提升詐騙者或正常者之偵測準確率。此外,本研究提出之方法對於不同類型屬性集,亦具有較穩定偵測結果。
    Online auction attracts a lot of speculators using dishonest tricks to obtain illegal benefits. This causes consumers’ loss, including time and money, and have negative impact on development of e-commerce in the future. For this reason, researchers have proposed a variety of fraud detection method to help users to avoid fraud. However, faced with the evolving fraud techniques, existing methods cannot provide satisfied detection accuracy for consumers. In view of this, this study developments a new dynamic fraud detection method. First, we collect the information from web pages of the Yahoo!Taiwan auction site and filter them with removing outliers. Second, we cluster those data into frauds and non-frauds categories. Finally, finding the best cluster combination of frauds and non-frauds sub-models according to detecting result of test data. To verify the effectiveness of this proposed method, the transaction data in Yahoo! Taiwan are gathered for experiments. In comparison with the single decision tree, the proposed dynamic detection method do help to improve the detection, and have stable detection results for different data set.
    顯示於類別:[資訊管理學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML6檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋