English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8720688      Online Users : 208
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/110935

    Title: 在經濟生產量模型中 使用不同方法尋求最佳解
    Other Titles: Using different approach to find optimal solutions in economic production quantity models
    Authors: 林芷安;Lin, Chih-an
    Contributors: 淡江大學管理科學學系碩士班
    婁國仁;Lou, Kuo-Ren
    Keywords: 經濟訂購量;供應鏈;存貨;導數;差分;EOQ;supply chain;Inventory;Derivatives;difference
    Date: 2016
    Issue Date: 2017-08-24 23:39:48 (UTC+8)
    Abstract: 在存貨模型中有各種不同的因素會影響其最佳補貨時間,現實生活中買賣雙方也會制定不一樣的買賣方式以獲得雙贏的局面,提供買賣雙方的信用時間以在允許的情況下延期付款即為此案例,透過這樣子的方法可以使買方能夠有更充足的時間以利資金周轉,也可以減少庫存時間減少持有成本,而賣方雖然增加了機會成本(即在這段期間之內可能受到的違約風險),但實質上能吸引更多的買方購買。
    存貨模型能夠有不同的形式來建立,幾乎全部學者利用微積分的方法來尋求最佳解,我們也使用它,但是存貨的訂購量實際上不為連續型,因此我們又使用差分方法來處理,求得最佳解,進而探討之間的差異。本篇研究引用 Teng et al. (2013)所建立的模型並用其一個範例,使用不同的方法計算最佳解。研究結果中顯示,使用不同的方法計算最佳解的差距與原本模型所計算出來的值差距不大,總利潤減少一點點,但是使用差分方法更符合實際情形,也別於使用微分方法後用四捨五入的方式求得最佳解。
    In the inventory models, there are various factors that can affect the optimum replenishment time. Buyer and seller in real life develop different ways to achieve the deal of a win-win situation, providing the credit time that can be extended in allowed situation to delay payment. Seller can make the buyer to have more time to facilitate the capital turnover through this way, and also can reduce the time of inventory and the inventory holding cost. Although the seller increases the opportunity cost, but is able to attract more buyers to buy in fact.
    Available inventory model can be created in different forms. Almost all researchers use calculus techniques to find the optimal solution, we also use it. But the production lot size actually is not a continuous variable, so we use the difference method to treat the model as following, and then find the optimal solution. Finally, how differences are between both. This study cites the model with an example established by Teng et al in 2013, and then uses different methods to calculate the optimal solution. The results of this research show that using calculus method to find the optimal solution that is nothing different with the original model by an arithmetic-geometric inequality method, and there are the same total profit. But there is a different result by using difference method from calculus method.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback