English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8506831      Online Users : 7953
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/110906


    Title: 一些更細緻的Hadamard不等式
    Other Titles: Some refinements of hadamard inequality
    Authors: 郭立惪;Kuo, Li-Te
    Contributors: 淡江大學中等學校教師在職進修數學教學碩士學位班
    楊國勝;Yang, Gou-Sheng
    Keywords: Hermife-Hadamard不等式;凸函數;Some refinements of Hadamard Inequality
    Date: 2016
    Issue Date: 2017-08-24 23:39:01 (UTC+8)
    Abstract: 如果 f: [a, b] → ℝ 為[a, b]中的凸函數,則
    f((a+b)/2) ≤ 1/(b-a)∫_a^b ▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1)
    恆成立,為眾所週知的Hermite-Hadamard不等式
    如果 f為[a, b]中的凸函數,是否存在實數 l及 L滿足下列不等式:
    f((a+b)/2)≤ l ≤1/(b-a )∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2)
    本論文研究的主要目的是為了提供這問題 (1.2) 更多的一些答案
    If f : [a, b] → ℝ is convex on [a, b], then
    f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1)
    This is the classical Hermite-Hadamard inequality
    If f is a convex function on [a, b] , do there exist real numbers l , L such that
    f((a+b)/2)≤ l ≤1/(b-a)∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2)
    The main purpose of this paper is to give some answers to
    the question (1.2)
    Appears in Collections:[應用數學與數據科學學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML171View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback