English  |  正體中文  |  简体中文  |  Items with full text/Total items : 57505/91036 (63%)
Visitors : 13426057      Online Users : 329
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/110338

    Title: Landau resonance between electrons and lower-hybrid waves in the inner magnetosphere
    Authors: Fumiko Otsuka;Kaiti Wang;Shuichi Matsukiyo;Tohru Hada
    Keywords: pitch-angle diffusion;electron;lower-hybrid wave;inner magnetosphere
    Date: 2017-05-24
    Issue Date: 2017-06-02 02:10:58 (UTC+8)
    Publisher: Japan Geoscience Union
    Abstract: Lower-hybrid waves are frequently observed near the geomagnetic equator in the inner magnetosphere (i.e., equatorial noise). They are in the frequency range between the proton gyrofrequency and the LH frequency, and were found to propagate approximately perpendicular to the background magnetic field with almost linear polarization. We have focused on the capability of the LH waves to scatter electrons, and showed that the diffusions could occur via both cyclotron and Landau resonances. To have the cyclotron resonance to occur, the electron energies should be higher than 1.56 MeV. On the contrary, the Landau resonance occurs even for relatively lower energies from 1.4 keV. Here, the linear resonance condition is assumed under the observed LH wave parameters such as the propagation angle of 85 degree and the frequency of 130 Hz in a plasma environment with the Alfven velocity of 1150 km/s.

    In this presentation, we discuss the Landau resonance between electrons and LH waves, by performing test particle simulation. The LH waves are given as a superposition of sinusoidal waves with different frequencies propagating highly perpendicular to the background magnetic field. The given waves obey the cold plasma dispersion relation. We evaluate the pitch-angle diffusion coefficient of electrons with energies from a few eV to 1 MeV. We discuss changes in pitch-angle distributions related to the diffusion processes.
    Relation: PEM16-P25, Abstracts of JpGU-AGU Joint Meeting 2017
    Appears in Collections:[航空太空工程學系暨研究所] 會議論文

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback