淡江大學機構典藏:Item 987654321/110017
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64187/96966 (66%)
造訪人次 : 11336027      線上人數 : 57
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/110017


    題名: Empirical Bayesian strategy for sampling plans with warranty under truncated censoring
    作者: Jyun-You Chiang;Y.L. Lio;Tzong-Ru Tsai
    關鍵詞: Genetic algorithm;loss function;posterior density function;prior density function;truncated life test
    日期: 2016-09-28
    上傳時間: 2017-03-17 02:11:03 (UTC+8)
    出版者: World Scientific Publishing Co. Pte. Ltd.
    摘要: To reach an optimal acceptance sampling decision for products, whose lifetimes are Burr type XII distribution, sampling plans are developed with a rebate warranty policy based on truncated censored data. The smallest sample size and acceptance number are determined to minimize the expected total cost, which consists of the test cost, experimental time cost, the cost of lot acceptance or rejection, and the warranty cost. A new method, which combines a simple empirical Bayesian method and the genetic algorithm (GA) method, named the EB-GA method, is proposed to estimate the unknown distribution parameter and hyper-parameters. The parameters of the GA are determined through using an optimal Taguchi design procedure to reduce the subjectivity of parameter determination. An algorithm is presented to implement the EB-GA method. The application of the proposed method is illustrated by an example. Monte Carlo simulation results show that the EB-GA method works well for parameter estimation in terms of small bias and mean square error.
    關聯: International Journal of Reliability, Quality and Safety Engineering 23(5), p.1650021
    DOI: 10.1142/S0218539316500212
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML292檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋