English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 49432/84393 (59%)
造访人次 : 7452222      在线人数 : 66
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/110017

    题名: Empirical Bayesian strategy for sampling plans with warranty under truncated censoring
    作者: Jyun-You Chiang;Y.L. Lio;Tzong-Ru Tsai
    关键词: Genetic algorithm;loss function;posterior density function;prior density function;truncated life test
    日期: 2016-09-28
    上传时间: 2017-03-17 02:11:03 (UTC+8)
    出版者: World Scientific Publishing Co. Pte. Ltd.
    摘要: To reach an optimal acceptance sampling decision for products, whose lifetimes are Burr type XII distribution, sampling plans are developed with a rebate warranty policy based on truncated censored data. The smallest sample size and acceptance number are determined to minimize the expected total cost, which consists of the test cost, experimental time cost, the cost of lot acceptance or rejection, and the warranty cost. A new method, which combines a simple empirical Bayesian method and the genetic algorithm (GA) method, named the EB-GA method, is proposed to estimate the unknown distribution parameter and hyper-parameters. The parameters of the GA are determined through using an optimal Taguchi design procedure to reduce the subjectivity of parameter determination. An algorithm is presented to implement the EB-GA method. The application of the proposed method is illustrated by an example. Monte Carlo simulation results show that the EB-GA method works well for parameter estimation in terms of small bias and mean square error.
    關聯: International Journal of Reliability, Quality and Safety Engineering 23(5), p.1650021(15 pages)
    DOI: 10.1142/S0218539316500212
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈