English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60868/93650 (65%)
造访人次 : 1151440      在线人数 : 25
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109847


    题名: Plasma modification of the electronic and magnetic properties of vertically aligned bi-/tri-layered graphene nanoflakes
    作者: Ray, S.C.;Soin, N.;Pong, W.-F.;Roy, S.S.;Strydom, A.M.;McLaughlin, J.A.;Papakonstantinou, P.
    日期: 2016-07-21
    上传时间: 2017-03-10 02:17:03 (UTC+8)
    摘要: Saturation magnetization (Ms) of pristine bi-/tri-layered graphene (denoted as – FLG) is enhanced by over four (4) and thirty-four (34) times to 13.94 × 10−4 and 118.62 × 10−4 emu g−1, respectively, as compared to pristine FLGs (Ms of 3.47 × 10−4 emu g−1), via plasma-based-hydrogenation (known as graphone) and nitrogenation (known as N-graphene) reactions, respectively. However, upon organo-silane treatment on FLG (known as siliphene), the saturation magnetization is reduced by over thirty (30) times to 0.11 × 10−4 emu g−1, as compared to pristine FLG. Synchrotron based X-ray absorption near edge structure spectroscopy measurements have been carried out to investigate the electronic structure and the underlying mechanism responsible for the variation of magnetic properties. For graphone, the free spin available via the conversion of the sp2 → sp3 hybridized structure and the possibility of unpaired electrons from induced defects are the likely mechanism for ferromagnetic ordering. During nitrogenation, the Fermi level of FLGs is shifted upwards due to the formation of a graphitic like extra π-electron that makes the structure electron-rich, thereby, enhancing the magnetic coupling between magnetic moments. On the other hand, during the formation of siliphene, substitution of the C-atom in FLG by a Si-atom occurs and relaxes out the graphene plane to form Si–C tetrahedral sp3-bonding with a non-magnetic atomic arrangement showing no spin polarization phenomena and thereby reducing the magnetization. Thus, plasma functionalization offers a simple yet facile route to control the magnetic properties of the graphene systems and has potential implications for spintronic applications.
    關聯: RSC Advances 6(75), pp.70913-70924
    DOI: 10.1039/C6RA14457H
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML216检视/开启
    Plasma modification of the electronic and magnetic properties of vertically aligned bi-tri-layered graphene nanoflakes.pdf3111KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈