English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91876 (63%)
造访人次 : 14057620      在线人数 : 92
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/109744

    题名: Real-Time Implementation of a Keypoint-Based Automatic Target Selection and Tracking System for Applications of Random Bin Picking
    作者: Tsai, Chi-Yi;Yu, Cheng-Jui;Yu, Chao-Chun;Wong, Ching-Chang
    日期: 2016/12
    上传时间: 2017-03-04 02:10:38 (UTC+8)
    摘要: Object recognition and detection play important roles in various computer vision applications. When images contain different types of objects, detection of an object-of-interest (OOI) from multiple stacking objects becomes a difficult task to be handled using a monocular camera. In this paper, a novel automatic target selection and tracking algorithm is proposed to address this issue efficiently. The proposed method first uses keypoint correspondences to compute control points of targets appeared in incoming images. Next, each OOI in captured images is separated from multiple stacking objects randomly placed in a box using mean shift clustering approach. Finally, a template-based visual tracking method is used to locate and track center position of the top OOI in the box. When implemented on an Intel Core i5-4440 3.1GHz platform, the proposed algorithm achieves real-time performance about 30 frames per second at 640x480 image resolution in the experiments.
    關聯: ICIC express letters. Part B, Applications : an international journal of research and surveys 7(5), pp.1135-1140
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Real-time implementation of a keypoint-based automatic target selection and tracking system for applications of random bin picking.pdf344KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈