淡江大學機構典藏:Item 987654321/109654
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56562/90363 (63%)
造訪人次 : 11851330      線上人數 : 126
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/109654


    題名: 學習先期預警機制設計
    其他題名: Design and Development of An Early Alert Mechanism
    作者: 孫慈睿;曹乃龍;郭庭綸;郭經華
    關鍵詞: IPAS;先期預警;學習分析;機器學習;決策樹
    日期: 2017-03-16
    上傳時間: 2017-02-25 02:10:33 (UTC+8)
    摘要: 確保學生學習成效是高等教育所高度關注的議題,近年來在大數據的引領下,透過大量的蒐集數據,進行數據分析,尋求線索與證據,採取合適行動以提升學生的畢業率和留校率,廣受重視。近期研究文獻顯示,學習先期預警對提升學習成效有顯著效益,故本研究將致力於設計一個先期預警完整系統架構,並著重在研究先期預警的偵測模式及適用屬性選擇。本論文使用SAS的決策樹模組進行先期預警的預測,實驗中分別測試A、B兩門課及各種屬性組合的決策樹模型,以選出可提供最高預測正確率的屬性組合。實驗結果發現A門課最佳屬性組合為點名及小考,其正確性(Accuracy)為78%;B門課最佳屬性組合為作業及小考,其正確性為82%。由實驗結果可知,不同的課程因為教學策略或方式的不同,可使用不同的屬性資料以產生最適預測模型。
    關聯: 第十二屆台灣數位學習發展研討會
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋