English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49962/85138 (59%)
Visitors : 7790733      Online Users : 80
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/109654


    Title: 學習先期預警機制設計
    Other Titles: Design and Development of An Early Alert Mechanism
    Authors: 孫慈睿;曹乃龍;郭庭綸;郭經華
    Keywords: IPAS;先期預警;學習分析;機器學習;決策樹
    Date: 2017-03-16
    Issue Date: 2017-02-25 02:10:33 (UTC+8)
    Abstract: 確保學生學習成效是高等教育所高度關注的議題,近年來在大數據的引領下,透過大量的蒐集數據,進行數據分析,尋求線索與證據,採取合適行動以提升學生的畢業率和留校率,廣受重視。近期研究文獻顯示,學習先期預警對提升學習成效有顯著效益,故本研究將致力於設計一個先期預警完整系統架構,並著重在研究先期預警的偵測模式及適用屬性選擇。本論文使用SAS的決策樹模組進行先期預警的預測,實驗中分別測試A、B兩門課及各種屬性組合的決策樹模型,以選出可提供最高預測正確率的屬性組合。實驗結果發現A門課最佳屬性組合為點名及小考,其正確性(Accuracy)為78%;B門課最佳屬性組合為作業及小考,其正確性為82%。由實驗結果可知,不同的課程因為教學策略或方式的不同,可使用不同的屬性資料以產生最適預測模型。
    Relation: 第十二屆台灣數位學習發展研討會
    Appears in Collections:[資訊工程學系暨研究所] 會議論文

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback