English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57310/90918 (63%)
造访人次 : 13013596      在线人数 : 157
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/109594

    题名: Prediction of monthly regional groundwater levels through hybrid soft-computing techniques
    作者: Fi-John Chang;Li-Chiu Chang;Chien-Wei Huang;I-Feng Kao
    关键词: Regional groundwater level forecast;Artificial neural networks (ANNs);Self-organizing map (SOM);Nonlinear autoregressive with exogenous inputs (NARX) network;Zhuoshui River basin
    日期: 2016-10
    上传时间: 2017-02-24 02:12:12 (UTC+8)
    出版者: Elsevier BV
    摘要: Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input–output patterns of basin-wide groundwater–aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.
    關聯: Journal of Hydrology 541(B), p.965-976
    DOI: 10.1016/j.jhydrol.2016.08.006
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Prediction of monthly regional groundwater levels through hybrid soft-computing techniques.pdf3273KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈