淡江大學機構典藏:Item 987654321/109585
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4030785      Online Users : 994
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109585


    Title: Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors
    Authors: Huang, Huang_wen
    Keywords: radiofrequency ablation (RFA);liver ablation;liver tumor;heat sink effect;thermally significant blood vessels;computer simulation
    Date: 2013-06-18
    Issue Date: 2017-02-24 02:11:48 (UTC+8)
    Publisher: Wiley-Blackwell Publishing, Inc.
    Abstract: PURPOSE:
    The major obstacles of radiofrequency ablation (RFA) heat treatments are nonuniform heating in the thermal lesion and heat sinks caused by large blood vessels during treatments which could lead to high tumor recurrence in patients. The objective of this study is to help comprehend RFA heat treatment through thermal lesion formation using computer simulation, and thus to provide helpful assistance in planning RFA.
    METHODS:
    RFA heat treatment is a popular "minimally invasive" treatment method for both primary and metastatic liver tumors, and the heat treatment is studied by numerical calculation. A finite difference model is used to solve all partial differential equations for a simple three-dimensional cubic geometry model. Maximum tissue temperature is used as a critical index for reaching thermal lesion during RFA. Cylindrical RF cool-tip electrode is internally cooled at constant water temperature. RFA thermal lesion is studied at various impacts by single and countercurrent blood vessel(s) traversing the thermal lesion. Several factors are considered, such as location, diameter, and orientation of the blood vessel(s) to the electrode.
    RESULTS:
    Results show the thermal lesion size decreases as the lesion blood perfusion rate increases. And, single large blood vessel which is orthogonal to RF electrode will cause less undercooled volume in the thermal lesion than one which is parallel to RF electrode. Furthermore, convective energy may easily damage parallel vessel and its surrounding normal tissues during RFA. Small blood vessels (or larger vessels with slow blood flow rate) during RFA could form "tail-like" thermal lesion formation, which could damage vessel downstream spots.
    CONCLUSIONS:
    Studies suggested that incomplete RF tumor ablation still exists within 1 cm distance between large blood vessel and RF electrode in a liver. This could have significant impact on local tumor recurrence rates. Second, if thermally significant vessel existed inevitably within the lesion, avoiding the RF cool-tip electrode placement next to the parallel large blood vessel would have a better heat treatment during RF heating. Additionally, reduced blood flow rate could help reduce significant cooling by large blood vessel.
    Relation: Medical Physics 40(7), 073303
    DOI: 10.1118/1.4811135
    Appears in Collections:[Department of Innovative Information and Technology] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML181View/Open
    Influence of Blood Vessel on the Thermal Lesion Formation during Radiofrequency Ablation for Liver Tumors.pdf2366KbAdobe PDF2View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback