淡江大學機構典藏:Item 987654321/109354
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 63190/95884 (66%)
造訪人次 : 4624017      線上人數 : 377
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109354


    題名: QUENCHING PROBLEMS FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM WITH SINGULAR BOUNDARY OUTFLUX
    作者: Selcuk, Burhan
    關鍵詞: Reaction-diffusion system;singular boundary outflux;quenching;maximum principles;monotone iterations
    日期: 2016-09
    上傳時間: 2017-01-17 09:40:56 (UTC+8)
    出版者: 淡江大學出版中心
    摘要: In this paper, we study two quenching problems for the following semilinear reaction-diffusion system:
    ut=uxx+(1−v)−p1,0<x<1, 0<t<T,ut=uxx+(1−v)−p1,0<x<1, 0<t<T,

    vt=vxx+(1−u)−p2,0<x<1, 0<t<T,vt=vxx+(1−u)−p2,0<x<1, 0<t<T,

    ux(0,t)=0, ux(1,t)=−v−q1(1,t), 0<t<T,ux(0,t)=0, ux(1,t)=−v−q1(1,t), 0<t<T,

    vx(0,t)=0, vx(1,t)=−u−q2(1,t), 0<t<T,vx(0,t)=0, vx(1,t)=−u−q2(1,t), 0<t<T,

    u(x,0)=u0(x)<1,v(x,0)=v0(x)<1, 0≤x≤1,u(x,0)=u0(x)<1,v(x,0)=v0(x)<1, 0≤x≤1,

    where p1,p2,q1,q2p1,p2,q1,q2 are positive constants and u0(x),v0(x)u0(x),v0(x) are positive smooth functions. We firstly get a local exisence result for this system. In the first problem, we show that quenching occurs in finite time, the only quenching point is x=0x=0 and (ut,vt)(ut,vt) blows up at the quenching time under the certain conditions. In the second problem, we show that quenching occurs in finite time, the only quenching point is x=1x=1 and (ut,vt)(ut,vt)blows up at the quenching time under the certain conditions.
    關聯: Tamkang Journal of Mathematics 47(3), pp.239-337
    DOI: 10.5556/j.tkjm.47.2016.1961
    顯示於類別:[淡江數學期刊] 第47卷第3期

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML422檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋