淡江大學機構典藏:Item 987654321/109240
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62819/95882 (66%)
Visitors : 3996816      Online Users : 606
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109240


    Title: Landau quantization in monolayer GaAs
    Authors: Chung, Hsien-Ching;Ho, Ching-Hong;Chang, Cheng-Peng;Chen, Chun-Nan;Chiu, Chih-Wei;Lin, Ming-Fa
    Keywords: Landau quantization;monplayer GaAs
    Date: 2017-03-13
    Issue Date: 2017-01-13 02:11:29 (UTC+8)
    Publisher: APS March Meeting 2017
    Abstract: Landau quantization in monolayer GaAs1 HSIEN-CHING CHUNG2, National Kaohsiung Normal University, CHING-HONG HO, CHENG-PENG CHANG, Tainan University of Technology, CHUN-NAN CHEN, Tamkang University, CHIH-WEI CHIU, National Kaohsiung Normal University, MING-FA LIN, National Cheng Kung University — In the past decade, the discovery of graphene has opened the possibility of two-dimensional materials both in fundamental researches and technological applications. However, the gapless feature shrinks the applications of pristine graphene. Recently, researchers have new challenges and opportunities for post-graphene two-dimensional nanomaterials, such as silicene (Si), germanene (Ge), and tinene (Sn), due to the large enough energy gap (of the size comparable to the thermal energy at room temperature). Apart from the graphene analogs of group IV elements, the buckled honeycomb lattices of the binary compositions of group III-V elements have been proposed as a new class of post-graphene two-dimensional nanomaterials. In this study, the generalized tight-binding model considering the spin-orbital coupling is used to investigate the essential properties of monolayer GaAs. The Landau quantization, band structure, wave function, and density of states are discussed in detail.
    Relation: APS March Meeting 2017
    Appears in Collections:[Graduate Institute & Department of Physics] Proceeding

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback