淡江大學機構典藏:Item 987654321/109079
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9305758      在线人数 : 247
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109079


    题名: An Eigen-based Approach for Enhancing Matrix Inversion Approximation in Massive MIMO Systems
    作者: Kelvin Kuang-Chi Lee;Chiao-En Chen
    关键词: Marcenko-Pastur law;Neumann series;matrix inversion;massive MIMO;zero-forcing;random matrix
    日期: 2017-10-26
    上传时间: 2017-01-04 02:10:21 (UTC+8)
    出版者: IEEE
    摘要: This correspondence presents a new matrix inversion approximation (MIA) method for massive multiple-inputmultiple- output (MIMO) systems. In contrast to the existing methods which are mostly derived from the Neumann series expansion framework, additional coefficients have been introduced in our proposed method to enhance the precision of approximation. We propose an efficient algorithm for the coefficient design which consists of an eigenvalue estimation procedure derived from random matrix theory, and a least-squares fitting procedure that solves a low-dimension over-determined system of linear equations. Complexity analysis and simulation results show that our eigen-based MIA method exhibits practically comparable computational complexity while achieving substantial performance enhancement compared to other benchmark methods.
    關聯: IEEE Transactions on Vehicular Technology 66(6), p.5480-5484
    DOI: 10.1109/TVT.2016.2622010
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    An Eigen-based Approach for Enhancing Matrix Inversion Approximation in Massive MIMO Systems.pdf486KbAdobe PDF2检视/开启
    index.html0KbHTML240检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈