淡江大學機構典藏:Item 987654321/109072
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 63246/95943 (66%)
造访人次 : 4828614      在线人数 : 192
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109072


    题名: Parallel Processing-Oriented Hybrid Scheduling of Virtual Machines in Cloud
    作者: Chen, Haibao;Zhao, Yuyan;Zhao, Shenghui;Chen, Guilin
    关键词: Parallel Processing;Virtualized Environment;Co-scheduling;Cloud
    日期: 2016-09
    上传时间: 2017-01-03 09:42:19 (UTC+8)
    出版者: 淡江大學出版中心
    摘要: In cloud computing environment, parallel applications generally run on symmetric
    multiprocessing (SMP) virtual machine (VM). Since this type of application requires synchronous
    operations between processes/threads, all virtual CPUs (vCPUs) of a parallel VM (i.e., the VM
    running parallel application) should be online simultaneously. At present, relevant studies have been
    intensively conducted from the perspective of vCPU co-scheduling in virtual machine monitor
    (VMM). However, the existing co-scheduling methods have the problems of unrestricted preemptions
    between parallel VMs, which probably results in negative impact on the performance of parallel
    applications in these VMs.
    To address the above problems, in this paper, we first analyze the deficiencies of the existing
    co-scheduling approaches in virtualized environment. Then we propose an enhanced co-scheduling
    algorithm to improve the performance of parallel application in SMP VM.
    關聯: Journal of Applied Science and Engineering 19(3), pp.347-356
    DOI: 10.6180/jase.2016.19.3.13
    显示于类别:[淡江理工學刊] 第19卷第3期

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML396检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈