淡江大學機構典藏:Item 987654321/109061
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64187/96966 (66%)
造访人次 : 11335667      在线人数 : 154
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/109061


    题名: Daily Peak Load Forecasting Based on Fast K-medoids Clustering, GARCH Error Correction and SVM Model
    作者: Song, Zongyun;Niu, Dongxiao;Xiao, Xinli;Wu, Han
    关键词: Daily Peak Load Forecasting;FKM;SVM;GARCH;Error Correction
    日期: 2016-09
    上传时间: 2017-01-03 09:06:54 (UTC+8)
    出版者: 淡江大學出版中心
    摘要: Safe and economic operation of power system is based on load forecasting, and how to increase
    forecasting accuracy is the premise of power dispatching and economic analysis. Present paper
    establishes SVM (support vector machine) forecasting model based on fast K-medoids clustering
    algorithm and data accumulative pre-processing. FKM (fast K-medoids clustering algorithm) is
    applied to extract similar days by dividing all samples into k clusters, and respective forecasting of k
    clusters can realize the forecasting of a whole object. Before inputting the data into SVM system, the
    original data is preprocessed by accumulation to weaken the irregularity disturbance and strengthen
    sequence regularity. Due to existing unexplained component in forecasting error, GARCH
    (generalized autoregressive conditional heteroskedasticity) model is employed to forecast the error
    with non-white noise. According to its results, error correction is applied to the forecasted daily peak
    load. The forecasting effect of the proposed model is compared with other models in the given
    example, which verifies that SVM model based on fast K-medoids clustering algorithm and GARCH
    model has the characteristic of effectiveness, superiority and universality. The accuracy of daily peak
    load forecasting is enhanced significantly
    關聯: Journal of Applied Science and Engineering 19(3), pp.249-258
    DOI: 10.6180/jase.2016.19.3.02
    显示于类别:[淡江理工學刊] 第19卷第3期

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML14检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈