English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56401/90256 (62%)
造访人次 : 11689385      在线人数 : 37
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/109058


    题名: A Routing Optimization Strategy for Wireless Sensor Networks Based on Improved Genetic Algorithm
    作者: Yao, Guangshun;Dong, Zaixiu;Wen, Weiming;Ren, Qian
    关键词: Wireless Sensor Network;Genetic Algorithm;Crossover;Mutation
    日期: 2016-06
    上传时间: 2017-01-03
    出版者: 淡江大學出版中心
    摘要: In order to resolve the problem of generating invalid new individual when using genetic
    algorithm for routing optimization in wireless sensor networks (WSNs), an improved genetic
    algorithm (ROS_IGA) is put forward. By considering the position and neighbors of nodes in WSNs,
    ROS_IGA takes reasonable crossover and mutation operation to ensure compliance with the
    topological of actual WSNs and the demand of communication among nodes. Furthermore, ROS_IGA
    takes many factors, such as the residual energy of sensor nodes, distance and energy consumption
    between adjacent nodes, communication delay and relay hops, into consideration to select suitable
    routing. So ROS_IGA increases the speed of convergence and optimizes the performance of WSNs.
    Finally, a simulation experiment is carried out and the experimental results show that the improved
    algorithm in this study can effectively finds the best routing and decreases energy consuming and also
    increases the network life cycle.
    關聯: Journal of Applied Science and Engineering 19(2), pp.221228
    DOI: 10.6180/jase.2016.19.2.13
    显示于类别:[淡江理工學刊] 第19卷第2期

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML205检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈