English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49521/84656 (58%)
Visitors : 7584640      Online Users : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/108839


    Title: 西北太平洋颱風快速增強之機率預報模式開發
    Authors: 佘佳宜;蔡孝忠;張麗秋
    Date: 2016/10/05
    Issue Date: 2016-12-16 02:11:33 (UTC+8)
    Abstract: 颱風強度快速增強(Rapid Intensification;簡稱 RI)為目前颱風預報中最具挑戰性的項目之一。根據美國國家颶風中心(National Hurricane Center)之定義,熱帶氣旋之中心最大風速若在24小時內增強達30 kt以上,則將該案例之強度變化認定為RI等級。本研究採用 Tsai and Elsberry(2014)之颱風強度類比預報模式(Weighted Analog Intensity Prediction;WAIP),配合SHIPS開發資料(Statistical Hurricane Intensity Prediction Scheme Developmental Data)之大氣及海洋環境變數,嘗試開發未來24小時 RI 發生機率之統計預報模式。本研究使用2000-2012年之颱風個案資料,採用羅吉斯迴歸(Logistical Regression),配合Hosmer-Lemeshow 適合度檢定、ROC(Receiver Operating Characteristic)曲線下方面積(Area Under Curve; AUC)、敏感度、特異度及準確度等校驗指標,討論預測變數(predictor)的最佳組合。初步研究結果顯示, 相較於僅採用SHIPS資料的預測模型,以 WAIP 模式搭配SHIPS大氣海洋環境變數所建立之預測模型,其預報校驗AUC值可達 0.83,表示此模式具有良好的判別能力。此外,模式之敏感度、特異度和準確度皆優於其他預測變數組合之預測模型,因此建議使用WAIP搭配SHIPS大氣海洋資料進行24小時RI機率預報模式的開發。本研究並進一步應用類神經網路(Artificial Neural Network;ANN),討論人工智慧理論對於24小時RI機率預報模式的改進效果。測試結果顯示,以非線性ANN方法建立預報模式,其預報測試組之敏感度可較原始模式提升 12.57%。本研究亦將TCHP相關因子額外納入 ANN進行訓練,模式預報測試結果可優於原始模式,其中以原始 Model A 配合 ATCHP之模式表現最佳,訓練組及測試 組之敏感度可較原始模式分別提升 10.3%及 7.4%。
    Relation: 105年天氣分析與預報研討會論文集
    Appears in Collections:[水資源及環境工程學系暨研究所] 會議論文

    Files in This Item:

    File Description SizeFormat
    agenda20160930_105 年天氣分析與預報研討會.pdf671KbAdobe PDF107View/Open
    index.html議程0KbHTML74View/Open
    index.html全文0KbHTML70View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback