淡江大學機構典藏:Item 987654321/108798
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57332/90921 (63%)
造訪人次 : 13037633      線上人數 : 155
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/108798


    題名: Deep Learning for Financial Sentiment Analysis on Finance News Providers
    作者: Min-Yuh Day;Chia-Chou Lee
    關鍵詞: Deep Learning;Financial Sentiment Analysis;Financial Technology (FinTech);Finance News Providers;Stock Prediction
    日期: 2016/08/18
    上傳時間: 2016-12-13 02:10:44 (UTC+8)
    出版者: ACM
    摘要: Investors have always been interested in stock price forecasting. Since the development of electronic media, hundreds pieces of financial news are released on different media every day. Numerous studies have attempted to examine whether the stock price forecasting through text mining technology and machine learning could lead to abnormal returns. However, few of them involved the discussion on whether using different media could affect forecasting results. Financial sentiment analysis is an important research area of financial technology (FinTech). This research focuses on investigating the influence of using different financial resources to investment and how to improve the accuracy of forecasting through deep learning. The experimental result shows various financial resources have significantly different effects to investors and their investments, while the accuracy of news categorization could be improved through deep learning.
    關聯: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2016)
    DOI: 10.1109/ASONAM.2016.7752381
    顯示於類別:[資訊管理學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML191檢視/開啟
    index.html議程0KbHTML193檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋