English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7377184      線上人數 : 78
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/108748

    題名: A Real Case Analytics on Social Network of Opinion Spammers
    作者: Wang, Chih-Chien;Day, Min-Yuh;Lin, Yu-Ruei
    關鍵詞: Fake review;Spammer detection;Social network analysis
    日期: 2016/07/30
    上傳時間: 2016-12-07 02:10:39 (UTC+8)
    出版者: IEEE
    摘要: People share their consumption experience and opinions to product as online product reviews or word-of-mouths. Consumers consult the product reviews posted by other consumers before making purchase decision. As a result, the influence of online product reviews increase dramatically. Since the influence of product reviews increase, firms may commit to improve product quality to earn positive opinions. Nevertheless, some firms choose the shortcut by hiring people to write positive fake reviews to promote themselves, as well as write negative fake reviews to demote product of their competitors. The fake product reviews may influent or even manipulate the majority of public opinion. However, fake reviewers always hide the real identities of themselves. Audiences have no idea about who are spammers. This paper analyzes a real case of fake reviews in Taiwan by social network techniques. To our knowledge, few previous studies had use social network techniques to detect fake reviewer. Thus, we propose a novel method of using social network analysis indices as features to detect spammer. The relationship of authors of product reviews posts and their replies might be used for spammer group detection.
    關聯: Proceedings of the 2016 IEEE 17th International Conference on Information Reuse and Integration (IEEE IRI 2016)
    顯示於類別:[資訊管理學系暨研究所] 會議論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋