English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9427330      線上人數 : 9688
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/108747


    題名: Developing Four Stars Election Open Data in RDF: Evidence from Taiwan Election Open Data Project
    作者: Chien, Ching-Yuan;Hung, Chia-Hsin;Day, Min-Yuh;Lin, Yuh-Tay;Yang, Chu-Yin
    關鍵詞: Open Data;RDF;OWL;Ontology;Taiwan Election
    日期: 2016-08-15
    上傳時間: 2016-12-07 02:10:37 (UTC+8)
    出版者: ACM
    摘要: Opening up data has become a global trend, especially when democratic governments want to show openness and transparency. In this paper, we describe how we implement a 4-star election open data in RDF in Taiwan. For the past fifty years, most of the data was recorded on paper and was stored in the Central Election Commission of Taiwan. First, we convert paper documents to PDF to digitize the data from the handwritten paper. We convert PDF files into CSV files by doing OCR and manual inputting. In addition, we classified and integrated all columns by their property and revised the column name in English. Since we were going to establish ontology to describe resources, properties, statements, and the relationship between entities, we structured E-R (entity-relationship) diagrams and transformed the E-R diagrams to ontology by using the Protégé OWL tool afterwards. Finally, we opened up Taiwan election data in RDF with ontology and CSV files using Python automation.
    關聯: Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016 (MISNC, SI, DS 2016)
    DOI: 10.1145/2955129.2955186
    顯示於類別:[資訊管理學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML291檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋