English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7376248      線上人數 : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/108045


    題名: CFD study of heat transfer enhanced membrane distillation using rough surface channels
    作者: Chang, Hsuan;Hsu, Jian-An;Chang, Cheng-Liang;Ho, Chii-Dong
    關鍵詞: Computational fluid dynamics;Membrane distillation;Mass transfer;Heat transfer;Rough surface
    日期: 2016/06/24
    上傳時間: 2016-10-22 02:11:24 (UTC+8)
    出版者: Elsevier BV
    摘要: Membrane distillation (MD) can utilize low level thermal energy, such as waste heat and solar thermal heat, and holds high potential to replace conventional energetically intensive separation technologies. Two issues related to MD were investigated in this study by computational fluid dynamics (CFD) simulation. First, the trans-membrane mass fluxes are controlled by the heat transfer in the boundary layers adjacent to the membrane, but the applicability of conventional correlations developed for rigid heat exchangers on MD is questionable. Second, reported experimental study has shown that employing fluid channels with rough surface can enhance the performance of MD. However, the internal transfer characteristics of these modules have not been analyzed. This paper presents the results of the 3-D CFD simulation of the direct contact MD (DCMD) modules with and without rough surface channels for desalination. The simulation is comprehensive in that it covers the entire length of the module and takes into account the trans-membrane heat and mass transfer. The model was verified with reported experiment data and the average deviation of mass flux is less than 10%. The simulation results reveal that the thermal entrance effect, which gives very high mass flux and heat transfer coefficient, is significant for the simulated modules. The averaged heat transfer coefficients of the entire module are not close to the predictions from the conventional correlations. Hence, directly applying the conventional correlations of heat transfer coefficients to the MD modules is not appropriate.
    關聯: Energy Procedia 75, pp.3083-3090
    DOI: 10.1016/j.egypro.2015.07.634
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML50檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋