English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57615/91160 (63%)
造访人次 : 13533697      在线人数 : 384
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/108020

    题名: Microwave Imaging in Frequency Domain for Through-Wall Multiple Conductors
    作者: Yu, Chia-Ying;Chiu, Chien-Ching;Chou, Yu-Kai;Shen, Szu-Chi
    关键词: inverse problem;through-wall imaging;asynchronous particle swarm optimization;multiple scatterers
    日期: 2016-07
    上传时间: 2016-10-22 02:10:26 (UTC+8)
    出版者: A S T M International
    摘要: This paper presents an inverse scattering problem for through-wall imaging. Two separate perfect-conducting cylinders of unknown shapes are behind a homogeneous building wall and illuminated by the transverse magnetic (TM) plane wave. After an integral formulation, a discretization using the method of moment (MoM) is applied. The through-wall imaging (TWI) problem is recast as a nonlinear optimization problem with an objective function defined by the norm of a difference between the measured and calculated scattered electric field. Thus, the shape of the metallic cylinder can be obtained by minimizing the objective function. The asynchronous particle swarm optimization (APSO) is employed to find out the global extreme solution of the object function. Numerical results demonstrate that even when the initial guesses are far away from the exact shapes, and the multiple scattered fields between two conductors are serious, good reconstruction still can be obtained. In addition, the effect of Gaussian noise on the reconstruction result is investigated and the numerical simulation shows that even though the signal-noise ratio (SNR) is 20 dB, we can still get good results of reconstructions.
    關聯: Journal of Testing and Evaluation 44(4), p.1617-1623
    DOI: 10.1520/JTE20140237
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈