淡江大學機構典藏:Item 987654321/108014
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64185/96962 (66%)
Visitors : 12627443      Online Users : 2914
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/108014


    题名: Entropic rigidity of randomly diluted two- and three-dimensional networks
    作者: M. Plischke;D. C. Vernon;B. Joós;Zhou, Z.
    日期: 1999-09-01
    上传时间: 2016-10-20 02:10:23 (UTC+8)
    出版者: College Park: American Physical Society
    摘要: In recent work, we presented evidence that site-diluted triangular central-force networks, at finite temperatures, have a nonzero shear modulus for all concentrations of particles above the geometric percolation concentration pc. This is in contrast to the zero-temperature case where the (energetic) shear modulus vanishes at a concentration of particles pr>pc. In the present paper we report on analogous simulations of bond-diluted triangular lattices, site-diluted square lattices, and site-diluted simple-cubic lattices. We again find that these systems are rigid for all p>pc and that near pc the shear modulus μ∼(p−pc)f, where the exponent f≈1.3 for two-dimensional lattices and f≈2 for the simple-cubic case. These results support the conjecture of de Gennes that the diluted central-force network is in the same universality class as the random resistor network. We present approximate renormalization group calculations that also lead to this conclusion.
    關聯: PHYSICAL REVIEW E 60(3), 3129-3135
    DOI: 10.1103/PhysRevE.60.3129
    显示于类别:[Graduate Institute & Department of Physics] Journal Article

    文件中的档案:

    档案 描述 大小格式浏览次数
    Entropic rigidity of randomly diluted two- and three-dimensional networks.pdf102KbAdobe PDF1检视/开启
    index.html0KbHTML150检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈