English  |  正體中文  |  简体中文  |  Items with full text/Total items : 55566/89886 (62%)
Visitors : 11023041      Online Users : 45
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107884

    Title: Physics of anisotropic materials under pressure
    Authors: 薛宏中
    Contributors: 淡江大學物理學學系
    Date: 1997
    Issue Date: 2016-10-12 10:44:19 (UTC+8)
    Abstract: The structural, vibrational, and electronic properties of anisotropic materials under compression are comprehensively investigated in this thesis. Recent developments in the techniques of high-pressure X-ray diffraction and Raman scattering, and significant advances in first principle simulations provide detailed high-pressure studies of condensed matter systems. In view of the widely disparate strength of cohesive forces, these studies consist of ionic compounds, quasi-two dimensional semiconductors, quasi-molecular solids, and end with liquid crystals. As a result of the coexistence of different hierarchical interactions in anisotropic systems, evidence of preferential pressure-induced enhancement of weak bonding is found not only in the structural response to external hydrostatic pressure but also in vibrational and electronic behaviour. Further, the understanding of pressure-induced breakdown of rigid-layer vibrations (explored in layered compounds), pressure-induced electron transfer in molecular crystals, and strong overlap of inter- and intra-molecular vibrational modes of liquid crystals provides insight into the essential physics of flexible molecular systems.
    Appears in Collections:[Graduate Institute & Department of Physics] Thesis

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback