English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54907/89265 (62%)
造訪人次 : 10599701      線上人數 : 17
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107606

    題名: Early Detection of Driver Drowsiness by WPT and FLFNN Models
    作者: Huang, Yo-Ping;Sari, Nila Novita;Lee, Tsu-Tian
    日期: 2016/10/11
    上傳時間: 2016-10-04 02:11:21 (UTC+8)
    摘要: This paper presents a method that can detect driver’s drowsiness by using the wavelet packet transform (WPT) and functional linkbased fuzzy neural network (FLFNN) models. Drowsy drivers have been reported to be vulnerable to car accidents. Early detection of drowsiness can help alert drivers or passengers to provide a safety drive on the road. For those old models or cars without equipped with advanced high technologies, there is a dire need to install sensor devices that can effectively detect drowsy status of drivers at an early stage. Photoplethysmography (PPG) is a non-invasive optical technique that measures relative blood volume changes in the blood vessels and has been universally used for research and physiological study. We develop such PPG sensor devices to be installed on the steering wheel to detect the physiological conditions (such as normal to drowsy) by using parameters extracted from the heart rate variability (HRV) obtained from PPG signal calculation. Experimental results revealed that the proposed model is effective in assessing the drowsy levels of drivers.
    關聯: 2016 IEEE International Conference on Systems, Man, and Cybernetics
    顯示於類別:[電機工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋