English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49433/84396 (59%)
Visitors : 7462564      Online Users : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107591

    Title: Fuzzy Data Association of Aerial Robot Monocular SLAM
    Authors: Wang, Yin-Tien;Chen, Ting-Wei
    Keywords: Visual localization and mapping;Aerial robot navigation;Detection of image features;Robot vision
    Date: 2016/8/17
    Issue Date: 2016-10-04 02:10:50 (UTC+8)
    Abstract: This study investigates the issues of visual sensor assisted aerial robot navigation. The major objectives are to provide the aerial robot the capabilities of localization and mapping in global positioning system (GPS) denied environments. When the aerial robot navigates in a GPS-denied environment, the visual sensor could provide the measurement for robot state estimation and environmental mapping. Considering the carrying capacity of the aerial robot, a single camera is used in this study and the image is transmitted to PC-based controller for image processing using a radio frequency module. The extended Kalman filter is used as the state estimator to recursively predict and update the states of the aerial robot and the environment landmarks. The contribution of this study are twofold. First, an efficient data association method is developed to determine the robust landmarks for robot mapping. Second, an ultrasonic sensor is used to provide one-dimensional distance measurement and solve the map scale determination problem of monocular vision. Meanwhile, the image depth is represented by using the inverse depth parameterization method and the image features initialization is achieved by a non-delayed procedure. The software program of the robot navigation system is developed in a PC-based controller. The navigation system integrates the sensor inputs, image processing, and state estimation. The resultant system is used to perform the tasks of simultaneous localization and mapping for aerial robots.
    Relation: Proceedings of the 3rd International Conference on Machine Vision and Machine Learning (MVML'16), pp.MVML 103
    DOI: 10.11159/mvml16.103
    Appears in Collections:[機械與機電工程學系暨研究所] 會議論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback