English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8007207      Online Users : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107583


    Title: Clustering for multivariate functional data
    Authors: Li, Pai-Ling;Kuo, Ling-Cheng
    Date: 2016-08-25
    Issue Date: 2016-10-04 02:10:27 (UTC+8)
    Abstract: A novel multivariate k-centers functional clustering algorithm for the multivariate functional data is proposed. We assume that clusters can be defined via the functional principal components subspace projection for each variable. A newly observed subject with multivariate functions is classified into a best-predicted cluster by minimizing a weighted distance measure, which is a weighted sum of discrepancies in observed functions and their corresponding projections onto the subspaces for all variables, among all the clusters. The weight of each variable represents the importance of a variable to the cluster information and is determined by the within-variable variation or the between-variable correlations. The proposed method can take the means and modes of variation differentials among groups of each variable into account simultaneously. In addition, the weight of the proposed algorithm is flexible and can be chosen by the objective of clustering. Numerical performance of the proposed method is examined by simulation studies, with an application to a data example.
    Relation: Book of Abstracts of COMPSTAT 2016
    Appears in Collections:[統計學系暨研究所] 會議論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML106View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback