English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91867 (63%)
造访人次 : 14035037      在线人数 : 151
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107500


    题名: The analysis of reconstruction efficiency with compressive sensing in different k-spaces
    作者: Chang, Feng-Cheng;Huang, Hsiang-Cheh
    关键词: Image reconstruction;Compressed sensing;Discrete Fourier transforms;Robot sensing systems;Redundancy
    日期: 2015-11-18
    上传时间: 2016-09-20 02:10:42 (UTC+8)
    出版者: IEEE
    摘要: Compressive sensing is a potential technology for lossy image compression. With a given quality, we may represent an image with a few significant coefficients in the sparse domain. According to the sparse modeling theories, we may randomly sense a few number of measurements in a transform domain and later reconstruct the sparse representation. Typically the sensing domain is a low-complexity transform domain and the computation complexity lies on the reconstruction phase. In this paper, the linear and nonlinear compressive sensing approaches are briefly introduced. A few experiments are performed based on the nonlinear approach. Both 2D-DFT and 2D-DCT sensing domains are included to show their effects to the reconstruction quality. The simulation shows that the two domains produce comparable results if the proper comparison condition is considered. Some directions of revising the reconstruction process is also discussed in this paper.
    關聯: 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP), pp. 67-70
    DOI: 10.1109/RVSP.2015.25
    显示于类别:[資訊創新與科技學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML263检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈