English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54907/89265 (62%)
造访人次 : 10599680      在线人数 : 18
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107475


    题名: SPEECH ENHANCEMENT BASED ON LABEL CONSISTENT K-SVD UNDER NOISY ENVIRONMENT
    作者: Hsieh, Ching-Tang;Chiang, Cheng-Yuan;Chen, Ting-Wen
    关键词: Speech enhancement;sparse representations;K-SVD;Label Consistent K-SVD(LCKSVD)
    日期: 2016-06-25
    上传时间: 2016-09-13 02:11:17 (UTC+8)
    摘要: The sparse algorithm for sparse enhancement is more and more popular issues, recently. In previous research, the sparse algorithm for sparse enhancement will spend much time, so we propose LC K-SVD(Label Consistent K-SVD) to reduce spending time. We focus on the White Gaussian Noise. The experiments show that denoising performance of our proposed method is very closed to sparse algorithm in SNR, LLR, SNRseg and PESQ, even better then it. Our method only need half time then sparse algorithm.
    關聯: Advances in Computer Science Research
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈