English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54488/89241 (61%)
造訪人次 : 10575650      線上人數 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107377

    題名: Speech Enhancement based on Sparse Representation under Color Noisy Environment
    作者: Ching-Tang Hsieh, Piao-Yu Huang, Ting-Wen Chen, Yan-heng Chen
    關鍵詞: Speech enhancement, sparse representations, K-SVD, discrete cosine transform (DCT), orthogonal matching pursuit (OMP)
    日期: 2015/11/10
    上傳時間: 2016-08-18 13:39:17 (UTC+8)
    摘要: Recently, sparse algorithm for signal enhancement is more and more popular issues. In this paper, we apply it to enhance speech signal. The process of sparse theory is classified into two parts, one is for dictionary training part and the other is signal reconstruction part. We focus environment on both white Gaussian noise and color noise filtering based on sparse. The orthogonal matching pursuit (OMP) algorithm is used to optimize the sparse coefficients X of clean speech dictionary, where clean speech dictionary is trained by K-SVD algorithm. Then, we multiply these two matrixes D' and X' to reconstruct the clean speech signal. Denoising performance of the experiments shows that our proposed method is superior to other state of art methods in four kinds of objective quality measures as SNR, LLR, SNRseg and PESQ.
    關聯: International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2015. pp.134-138.
    顯示於類別:[電機工程學系暨研究所] 會議論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋