English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51275/86342 (59%)
Visitors : 8145777      Online Users : 83
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107044


    Title: Diagnosis of brain metastases from lung cancer using a modified electromagnetism like mechanism algorithm
    Authors: Chen, K-H;Wang, K-J;Adrian, A-M;Wang, K-M
    Keywords: Brain metastases;Electromagnetism like mechanism;Feature selection;Lung cancer;Support vector machine;Synthetic minority over-sampling technique
    Date: 2015-01-01
    Issue Date: 2016-08-15
    Publisher: Springer New York LLC
    Abstract: Brain metastases are commonly found in patients that are diagnosed with primary malignancy on their lung. Lung cancer patients with brain metastasis tend to have a poor survivability, which is less than 6 months in median. Therefore, an early and effective detection system for such disease is needed to help prolong the patients’ survivability and improved their quality of life. A modified electromagnetism-like mechanism (EM) algorithm, MEM-SVM, is proposed by combining EM algorithm with support vector machine (SVM) as the classifier and opposite sign test (OST) as the local search technique. The proposed method is applied to 44 UCI and IDA datasets, and 5 cancers microarray datasets as preliminary experiment. In addition, this method is tested on 4 lung cancer microarray public dataset. Further, we tested our method on a nationwide dataset of brain metastasis from lung cancer (BMLC) in Taiwan. Since the nature of real medical dataset to be highly imbalanced, the synthetic minority over-sampling technique (SMOTE) is utilized to handle this problem. The proposed method is compared against another 8 popular benchmark classifiers and feature selection methods. The performance evaluation is based on the accuracy and Kappa index. For the 44 UCI and IDA datasets and 5 cancer microarray datasets, a non-parametric statistical test confirmed that MEM-SVM outperformed the other methods. For the 4 lung cancer public microarray datasets, MEM-SVM still achieved the highest mean value for accuracy and Kappa index. Due to the imbalanced property on the real case of BMLC dataset, all methods achieve good accuracy without significance difference among the methods. However, on the balanced BMLC dataset, MEM-SVM appears to be the best method with higher accuracy and Kappa index. We successfully developed MEM-SVM to predict the occurrence of brain metastasis from lung cancer with the combination of SMOTE technique to handle the class imbalance properties. The results confirmed that MEM-SVM has good diagnosis power and can be applied as an alternative diagnosis tool in with other medical tests for the early detection of brain metastasis from lung cancer.
    Relation: Journal of Medical Systems 40(35)
    DOI: 10.1007/s10916-015-0367-3
    Appears in Collections:[企業管理學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML42View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback