English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55023/89277 (62%)
造访人次 : 10604314      在线人数 : 29
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107036

    题名: A new particle swarm feature selection method for classification
    作者: Chen, K.-H.;Chen, L.-F.;Su, C.-T.
    关键词: Feature selection;Particle swarm optimization;Regression;Genetic algorithms;Sequential search algorithms
    日期: 2014-06-01
    上传时间: 2016-08-15
    出版者: Springer New York LLC
    摘要: Searching for an optimal feature subset from a high-dimensional feature space is an NP-complete problem; hence, traditional optimization algorithms are inefficient when solving large-scale feature selection problems. Therefore, meta-heuristic algorithms are extensively adopted to solve such problems efficiently. This study proposes a regression-based particle swarm optimization for feature selection problem. The proposed algorithm can increase population diversity and avoid local optimal trapping by improving the jump ability of flying particles. The data sets collected from UCI machine learning databases are used to evaluate the effectiveness of the proposed approach. Classification accuracy is used as a criterion to evaluate classifier performance. Results show that our proposed approach outperforms both genetic algorithms and sequential search algorithms.
    關聯: Journal of Intelligent Information Systems 42(3), pp.507-530
    DOI: 10.1007/s10844-013-0295-y
    显示于类别:[企業管理學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈