English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8170541      線上人數 : 91
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107036

    題名: A new particle swarm feature selection method for classification
    作者: Chen, K.-H.;Chen, L.-F.;Su, C.-T.
    關鍵詞: Feature selection;Particle swarm optimization;Regression;Genetic algorithms;Sequential search algorithms
    日期: 2014-06-01
    上傳時間: 2016-08-15
    出版者: Springer New York LLC
    摘要: Searching for an optimal feature subset from a high-dimensional feature space is an NP-complete problem; hence, traditional optimization algorithms are inefficient when solving large-scale feature selection problems. Therefore, meta-heuristic algorithms are extensively adopted to solve such problems efficiently. This study proposes a regression-based particle swarm optimization for feature selection problem. The proposed algorithm can increase population diversity and avoid local optimal trapping by improving the jump ability of flying particles. The data sets collected from UCI machine learning databases are used to evaluate the effectiveness of the proposed approach. Classification accuracy is used as a criterion to evaluate classifier performance. Results show that our proposed approach outperforms both genetic algorithms and sequential search algorithms.
    關聯: Journal of Intelligent Information Systems 42(3), pp.507-530
    DOI: 10.1007/s10844-013-0295-y
    顯示於類別:[企業管理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋