English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11340803      線上人數 : 160
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/107030


    題名: Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm
    作者: Chen, K.-H.;Wang, K.-J.;Tsai, M.-L.;Wang, K.-M.;Adrian, A-M.;Cheng, W.-C.;Yang, T.-S.;Teng, N.-C.;Tan, K.-P.;Chang, K.-S.
    關鍵詞: Gene expression;Cancer;Particle swarm optimization;Decision tree classifier
    日期: 2014-02-07
    上傳時間: 2016-08-15
    出版者: BioMed Central Ltd.
    摘要: Background
    In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data.

    Results
    To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets.

    Conclusion
    Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
    關聯: BMC Bioinformatics 15(49)
    DOI: 10.1186/1471-2105-15-49
    顯示於類別:[企業管理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Gene selection for cancer identification a decision tree model empowered by particle swarm optimization algorithm.pdf664KbAdobe PDF1檢視/開啟
    index.html0KbHTML150檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋