English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58808/92514 (64%)
造訪人次 : 650455      線上人數 : 54
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107028

    題名: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients
    作者: Wang, K.-J.;Makond, B.;Chen, K.-H.
    關鍵詞: Breast cancer;Classification;Oversampling technique;Particle swarm optimization;Synthetic minority
    日期: 2014-07-01
    上傳時間: 2016-08-15
    出版者: Elsevier BV
    摘要: In this study, we propose a set of new algorithms to enhance the effectiveness of classification for 5-year survivability of breast cancer patients from a massive data set with imbalanced property. The proposed classifier algorithms are a combination of synthetic minority oversampling technique (SMOTE) and particle swarm optimization (PSO), while integrating some well known classifiers, such as logistic regression, C5 decision tree (C5) model, and 1-nearest neighbor search. To justify the effectiveness for this new set of classifiers, the g-mean and accuracy indices are used as performance indexes; moreover, the proposed classifiers are compared with previous literatures. Experimental results show that the hybrid algorithm of SMOTE + PSO + C5 is the best one for 5-year survivability of breast cancer patient classification among all algorithm combinations. We conclude that, implementing SMOTE in appropriate searching algorithms such as PSO and classifiers such as C5 can significantly improve the effectiveness of classification for massive imbalanced data sets.
    關聯: Applied Soft Computing 20, pp.15-24
    DOI: 10.1016/j.asoc.2013.09.014
    顯示於類別:[企業管理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋