English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51931/87076 (60%)
造訪人次 : 8490577      線上人數 : 210
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107001

    題名: A rough set-based association rule approach for a recommendation system for online consumers
    作者: Liao, Shu-hsien;ChangHsiao-ko
    關鍵詞: Data mining;Rough set;Association rule;Rough set association rule;Analytic hierarchy process;Recommendation systems
    日期: 2016-11-01
    上傳時間: 2016-08-15
    出版者: Elsevier Ltd
    摘要: Increasing use of the Internet gives consumers an evolving medium for the purchase of products and services and this use means that the determinants for online consumers’ purchasing behaviors are more important. Recommendation systems are decision aids that analyze a customer's prior online purchasing behavior and current product information to find matches for the customer's preferences. Some studies have also shown that sellers can use specifically designed techniques to alter consumer behavior. This study proposes a rough set based association rule approach for customer preference analysis that is developed from analytic hierarchy process (AHP) ordinal data scale processing. The proposed analysis approach generates rough set attribute functions, association rules and their modification mechanism. It also determines patterns and rules for e-commerce platforms and product category recommendations and it determines possible behavioral changes for online consumers.
    關聯: Information Processing & Management 52(6), p.1142–1160
    DOI: 10.1016/j.ipm.2016.05.003
    顯示於類別:[管理科學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    A rough set-based association rule approach for a recommendation system for online consumers.pdf788KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋